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The well-known Fourier integral solution of the free diffusion equation in an 
arbitrary Euclidean space is reduced to Feynmannian integrals using the method 
partly contained in the formulation of the Fresnelian integral. By replacing the 
standard Hilbert space underlying the present mathematical formulation of the 
Feynman path integral by a new Hilbert space, the space of classical paths on 
the tangent bundle to the Euclidean space (and more general to an arbitrary 
Riemannian manifold) equipped with a natural inner product, we show that our 
Feynmannian integral is in better agreement with the qualitative features of the 
original Feynman path integral than the previous formulations of the integral. 

1. I N T R O D U C T I O N  

Since Feynman  (1948) postulated his path integral, numerous  authors 
have p roposed  various mathemat ical  formulat ions to establish the existence 
and provide an unders tanding  of  the vague integral. The most  notable 
formulat ions  are by Kac  (1949, 1959), De Witt (1957), Cameron  (1960, 
1962-63, 1968), Ito (1961), Nelson (1964), Cheng (1972, 1973), DeWitt-  
Morette  (1972, 1974, 1976, 1979), McLughl in  and Schulman (1971), 
Albevario and H o e g h - K r o h n  (1976, 1979), T ruman  (1976, 1977, 1978, 1979), 
DeWit t -Moret te  et al. (1979, 1980), Tarski (1979), Elworthy and Truman  
( 1981 ), and Streit and Hida  (1983). A recent review which contains extensive 
bibliographies on this subject prior  to 1980 and focusses on Eucl idean 
spaces is found  in Exner  (1985). 

Despite this extensive work on its founda t ion  and also on its applicat ion 
[the latter can be seen in Schulman (1981) and Gl imm and Jatte (1981)], 
the Feynman  path integral still needs to be examined and elaborated,  at 
least in the fol lowing aspects:  

1. A clearer link between the various mathemat ical  formulat ions listed 
above with the original Feynman  path integral (Feynman  1948; 
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Feynman and Hibbs, 1965) and the usual integrals needs to be 
exposed. 

2. Relationships between the various formulations of the integral, such 
as the one produced by Johnson (1982) and Kun Soo Chang et al. 
(1984), are yet to be fully established. 

3. We still need a better deliberation on the agreement, or otherwise, 
of path integrals on Riemannian manifolds, particularly the formula- 
tions by DeWitt-Morette (1979), DeWitt-Morette et al. (1979, 1980), 
and Elworthy and Truman (1981) with other quantization pro- 
cedures, namely that of Schwinger's action integral (Cohen and 
Shaharir, 1974), the Born-Jordan-Dirac procedure (Lin et al., 1970), 
or even with the Feynman path integrals formulated by DeWitt 
(1957), Cheng (1972, 1973), and McLughlin and Schulman (1971), 
and with the stochastic mechanics as discussed by Shaharir (1986b). 

In this paper we give yet another framework for formulating the 
Feynman path integral, essentially aiming toward generalizing the work of 
Albevario and Hoegh-Krohn (1967, 1979) and producing a path integral on 
Riemannian manifolds that contains all the qualitative features of the 
original Feynman path integral, especially the concept of "sum over all 
classical paths." 

First, we carefully derive a Feynmannian integral from the well-known 
solution of the free diffusion equation (the heat equation without external 
source or the Shr/Sdinger equation for a free particle) in ~n. This is done 
via different Hilbert spaces: a refinement of the traditional space 

H = {3̀  ~ L~'I([0, t]; Rn), with ~/(t) = 0 
and inner product m/h  ~t o 3)1(s) �9 "22(s) ds} 

into 

H~/~ = {classical paths on ~n but with the same inner product as in H} 

and the generalization of d n ral t2, 

Xiiz,(Pct) = {vector fields parallel to classical path 3' 
with inner product m/ h ~o g(x(s), y(s) ) ds} 

Even though other authors, particularly Albevario and Hoegh-Krohn 
(1976, 1979), have essentially used the same mathematical basis (but limited 
to the Fourier integral and the algebra of complex-bounded Borel measures 
on •" and H) in formulating their celebrated Fresnelian integral, and 
Elworthy and Truman (1981) have done their analysis on the set of vector 
fields, but with more general elements than our elements in XIIz , (Pc l )  and 
different inner product, I feel that the present framework differs from theirs 
in the following respects: 
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1. The present framework is more natural, especially when considering 
our proposal to base the Feynman path integral on the manifold of 
classical paths whose tangent space is restricted to XFI~(Pc~) even for 
the case of diffusion in Euclidean space R". This has been overlooked 
by previous authors. [The inner product used by Elworthy and 
Truman (1981) is very much different from ours, and for our pur- 
poses we find that their inner product is not suitable for formulating 
our Feynmannian path integral.] 

2. Our approach establishes very clearly the link between our path 
integral with the original Feynman path integral and ordinary 
integrals. 

3. This paper provides a new framework for formulating a Feynman- 
nian path integral on Riemannian manifolds in a very much different 
setting than those formulated by DeWitt-Morette (1979), DeWitt- 
Morette et al. (1979, 1980), and Elworthy and Truman (1981), but 
generalizing the Fresnelian integral of Albevario and Hoegh-Krohn 
(1976, 1979) and Truman (1978). 

2. A DERIVATION OF A FEYNMANNIAN PATH INTEGRAL ON 
EUCLIDEAN SPACE 

It is well known (for example, Reed and Simon, 1979) that by applying 
the method of Fourier integral calculus to the Euclidean free diffusion 
equation (heat equation without external source or the Schr6dinger equation 
for free particle in •") 

k0l~ v~ n 02~ 
- - =  L U-5, Re k c R  + (1) Ot i=l oxi 

~O(x, 0) = ~b(x) (2) 

one obtains the solution 

~(x, t) = (47rt/k) -"/2 Is ~ [exp(-]z]2k/4t)]&(x+z) dz (3) 

We will show that for a class of ~b, this solution can be reduced to a 
standard form of the Feynman path integral, 

4,(x, t)= I exP[h I~ L(~,x) ds] dx (4) 

where the integral is prescribed as "the sum over all classical paths" 
corresponding to the classical Lagrangian L of a free particle with mass m, 

L(~, x) = l m  ~ -2 xj, 2~ =--- dx/dt, (5) 
j= l  
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and h is the Planck constant. Our aim is to produce a precise meaning for 
this integral which contains all of  the qualitative prescriptions of the integral 
described by Feynman. Theorem 2.0 below provides a partial solution to 
the problem. Theorem 2.0 depends on the following lemmas. 

Lemrna 2.1. Let 

L2't3([0, t); R~)={y:  [0, t ] ~ R  n, y has derivatives up to/3 order a.e., 
and each derivative is square-integrable in [0, t]} 

cl  . n Hm/h = {3' ~ L2'2([0, t], R ), ~ = 0 a.e., and for any 3' and ~7 
of such functions (71 ~7) = m~ h ~'o "i,( s ) ' ~) ( s ) ds} 

Then H ~ / h  is a separable Hilbert space (an overdot denotes the derivative 
d/ds ,  and a centered dot is the Euclidean inner product). 

Proof The fact that H~/~  is a vector space with inner product (. 1. ) is trivial 
and both are classical results. Now we show that every limit point y of a 

cl sequence {Yk} ~ Hm/~ is in the set itself. We have yk(s)  = aks + bk ; ak, bk ~ ~ ; 
and 

mlof ( y - - y k l y - - y k ) = ~  ( r  ( . 9 -ak )  ds 

which shows that 

p is a limit point for {ak} in L 2 

and by completeness of L 2, 

3) = a ~ ~n a.e., where a is limit point of {a,} 

and hence /~" = 0 a.e. 
cl  H , , / ,  is separable since {id, 1: id(s)  = s, l (s)  = 1} is a countable base 

of H~/~.  �9 

L e m m a  2.2. (1) Let C[(0, t); R"] be a set of continuously differentiable 
maps from the interval (0, t) into the n-Euclideam space whose standard 
inner product is denoted by g: g(a, b) = a .  b; and let 

evs: C[(0, t): ~ " ] ~ R "  

evs( f )  = / ( s )  

the evaluation map at s. Then (,), an inner product on C[(0, t); ~"] defined 
by 

(3', a )  = g ( 3 ' ( s ) ,  a ( s ) )  = 3 ' (s)  �9 a ( s )  

is the pullback of g by ev~, 

( ,)  = ev*(g)  



New Framework for the Feynman Path Integral 1079 

2. Let C'[(0, t); R ~] be a set of continuously differentiable maps from 
(0, t) into R n. Then (,), an inner product on C'[(0, t); En] defined by 

(y, A)=  -~(s) �9 i ( s )  

is the pullback of g by a map 

devs: C'[(0, t); ~ ] ~ R  n 

devs(f) = f ( s )  
el 3. The inner product on Hm/~ defined in Lemma 2.1 is a pullback of 

the Euclidean metric g by the map 

devso,~:H,,,/h~N , a =  , t>O 

dev .... (A) = aX(so), so is fixed 
cl and the inner product g is a pullback of (,), the metric on Hm/~ by the map 

cl F : ~ ~ Hm/~ 

F ( y ) = h ,  h ( s ) = ( t - s ) y ( f i / m t )  1/2 

Proof (1) Since evs is linear, then, by the definition of the Frechet 
derivatives D, 

V (  evs)(fo)(g ) = g( s ) (6) 

for any foe  C[(0, t): R"] and g c  TsoC[(0, t); Rn], the tangent space of 
C[(0, t); R "] at f0, which, in this case, may be identified by C[~,0, t); R n] 
itself [see Abraham et al. (1983) for a more general evaluation map and its 
derivatives, and Golubitsky and Guillemin (1973) for manifolds of map- 
pings]. By the definition of the pullback (*) (for example, Lang, 1985; 
Abraham et al., 1983) 

( A , y ) = e v * ( g ) ( h , y ) ,  h, yCTAoC[(O,t);g~ ~] 

= g(evs(ho))(T~oeV~(h), T~oev~(y)) 

= g(ho(S))(h (s), y(s)), by (6) 

= h (s) �9 y(s),  definition 

(2) Since dev~ is linear, once again we have 

Tso( dev~)(g ) = ( dev~(fo), V (  devs)(fo)(g ) ) 

= (fo(s), g(s))  

The result is obtained through the same argument as in 1. 
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(3) Since dev,o.~ is linear, 

T~o dev,o.~(A ) = (dev .... (Ao), a)t(So)) 

By the result in 2, 

(;t, ~)= ~2X(So) �9 ,~(So), 

~2Io 
= - -  ~ ( s )  . ~ ( s )  ds  

t 

since )t(s).  )t(s) is constant for any s. Hence, the result is obtained as 
asserted. For the second part, 

F ( y ) = ( t - i d ) Y \ m t J  , id(s)=s,  t(s) = t 

which is linear in y. Thus 

DF(yo)(y) = ( t - i d ) y ( h / m t )  1/2 

and hence 

g(Yo)(Y, z) = F*(( ,))(y,  z) 

= (TyoF(Y), TyoF(Z)) 

= ( h / m t ) ( ( t -  id)y, ( t -  id)z) 

= ( I / t )  ( - y ) .  ( - z )  ds 

= y ' z  �9 

We can now prove our first theorem on the reduction of a class of  
solutions to the diffusion equation into Feynmannian path integrals. 

Theorem 2.0. Suppose ~b : R" ~ C is Lebesque square-integrable and a 
Fourier transform of a complex bounded Borel measure/x  on ~";  then the 
solution of  the Euclidean free diffusion equation (3) can be reduced to a 
Feynmannian path integral 

~b(x, t) = ( exp [ i / h  Sto L(q(s), (l(S)) ds] dDF(q) (7) 
JH 2). 

where 

L = ei(~/2-P)Sr p = phase of k 

~(q(s ) ,  dl(S)) =�89 �9 q(s) 

is the classical Lagrangian for a free particle with mass m; 
el H, , / ,  = {q ~ L2'2([0, t]: R " ) , / / =  0 a.e., and for any qi of  such 

functions (ql ]q2) = rn/~ ~o (h(S) �9 42(s) ds is well defined} 
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is the space of classical paths for a free.particle; and a Feynmannian measure 
De is given by 

dDr  = [ rxo( dev~o,~) ]*( d/x <~,, ) 

E zjcl 
AO ~* ml~ 

h ~-~ O~A (So) , cr = (mr~h)  1/2 

So is arbitrary 

d~ + .... = ( S - t )* (  dtx ~,x) 

S : ~ -~ ~" 

z~-+ y = (IkI/2t)Uez, a scaling map 

dlx+,x(y) = e ~x" dt~,(y)  

or equivalently 

f 
D r ( A )  = | e f's" dlx4~(Y) 

3 (FoT) I(A) 

cl F :~" --> H,n/~ 

y~-+ A, h(s) = ( t - s ) y ( h / m t )  1/2 

T = S  l : ~ n + R n ,  T ( y ) = y ( 2 t / I k [ )  1/2 

Proof We have, for Re k > 0 ,  from (3), 

O(x, t )=  f~,, (4zr t /k)  -"/2 ez'zk/4t(~(X-l- Z) dz 

= f ( 4 ~ t / k )  - ' /2  e 
z.zk/4t 

3~ 

= f e y-y,/k e~-y d tx , (y )  
J ~n 

by Fubini's theorem and the properties of the "normal distribution" [with 
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some reservations, as discussed by Shaharir (1986)a)]. Hence, 

qt(x, t) = JR" e-rYt/k dl~ee,x(y) 

[ dl.tco,x = eiXy dl.t6(y) 

a complex bounded Borel measure (e.g., Exner, 1985)] 

= J[,  e x p [ - e x p ( - i p ) z ,  z/2] dtz,,x,s(z) 

[p = phase of k, /* r = bt e,,x o S -1, 

S - i :R"  + R  ", y ~ z = y ( Z t / l k l )  '/2 ] 

or in terms of differential forms 

d~ ~,x,, = (S- ' )*(dt~ ,~)  

the pullback of d/.t~,,x by S -~. [Association of a measure with a differential 
form is well known; see, for example, Abraham et aL (1983).] 

Now 

qJ(x, t )=  f exp[aQo(h) " Gao(h)] dt*e,,~,S(Qo(;t)) 
3 TbR n 

a = l  e - i p  

b = aho(So), Ao~ ~l Hm/~ 

Choose 

Gao(h) = T~of(h ) 

where f = dev .... is defined as in the theorem. Then by Lemma 2.2, part 3, 
and the general theory of the transformation variable of an integral of a 
differential form, we have 

4J(x, t) = f T.oH2). e -a(zlst) dD F (A  ) 

In fact, by identifying dlx~,x,s as to, a differential form, we have 

G*o(exp~ II II~"" to) 

= ( e x p o  II 112~ ~ C~o" G*0(to) 

= e x p o  II IIN oo C~o" G*o(to) 

=expo (ll II 2"~ Gxo)" G*o(to) 

= exp o g(Txof, Txof) " G*o(w), g is the - product, 
2 1 =expo [I 11~2~ " G*o(to) by Lemma 2.2, part 3 
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cl The result is obtained by identifying G*o(W ) as a measure; TxoH,,/~ as 
cl Hm/~; and 

-1  = i 2= i exp(i~/2) 

The other parts of the theorem are proved by similar arguments, but 
using the second part of Lemma 2.2, part 3, and the theory of Borel measures, 
since all the relevant transformations T and F are proper maps. The measure 
Dv is obtained by using the Radon-Nikodym theorem. �9 

Remark 2.0. We note that Theorem 2.0 is of exactly the same form as 
the original Feynman path integral (Feynman, 1948; Feynman and Hibbs, 
1965) for the case of the Schr6dinger equation, k = - 2 m i / h ,  including "the 
sum over all the classical paths." 

Our method differs significantly from that contained in the formalism 
of the Fresnelian integral of Albevario and Hoegh-Krohn (1976, 1979), 
especially the important step regarding the role of "the reproducing kernel" 
(see also Exner, 1985) for transforming an integral 

f e ix'y dl~(y) 

into an integral on the well-known Hilbert space 

H = { y c  L2"([0, t]; ~"), y ( t ) = 0 ,  

(7, A) =S' 0 ~(s) .  A(s) ds} 

of the form 

n e i<~'~y du(A) 

by letting x = 3/(0) and y~--~A, A(s)= ( t - s ) y .  Lemma 2.2, part 3, and also 
the proof of Theorem 2.0 show that their arguments are not completely 
justifiable. 

It is natural to seek a better result than Theorem 2.0. Theorem 2.1 below 
shows that, with a slightly different argument, all solutions of the free 
diffusion (not necessarily just the Schr6dinger equation) can in fact be 
reduced to exactly the same form as the original Feynman path integral. 

Theorem 2.1. Suppose the initial distribution of the free diffusion 
problem is such that 

mx(A) = I exp{exp[-(z - x ) .  (z -x )a]}~b(z)  dz, Re a > 0 
3A 
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for all x, defines a complex-bounded Borel measure mx on Rn; then the 
solution of the free diffusion problem can be reduced to a Feynmannian 
path integral in exactly the form of the original Feynmann path integral, 

f rio ] 0(x, t ) =  exp i/h L(gl(S), q(s)) ds dDF(q) 
d H m e ) h  i_ 

where L is the classical Lagrangian for a free particle in ~" and 

k i 
a . . . .  R e k > 0  

4t 2 '  

where F is given in Theorem 2.0. (rex(A)) is just an expected value of &(z), 

1 I ' 

Proof We have 

O(x, t) = f~. (47rt/k) -"/2 eZZk/'&(z+x) dz 

= JR f "  (4~t/k)-"/2 eiZZ/2 e . . . .  (k/4t+i/z)~(Z~-X) dz 

However, given 

mx(A)=fAe-lZ-xl2~4)(z)dz, Re oe>0 

= [ e-yy~4~(x+y) dy 
J T-I(A) 

=mx, T(A), T ( z ) = z - x = y  

is a complex-bounded Borel measure, so that mx, r is a complex-bounded 
Borel measure on •", since T is clearly a homemorphism;  hence 

O(x, t) = [ e 'z'z/2 dux,,(z) 
JR n 

dl~x,,(z) = (41rt/k)-"/2 e .... (k/a'-i/2)&(x + z) dz 

is a complex-bounded Borel measure. 
Finally, use the transformation F :  z~--~H~/~ of G given in the proof  

of  Theorem 2.0 to obtain the result. 
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The following corollary is not surprising, since it is essentially the result 
implicitly contained in the Fresnelian integral of  Albevario and Hoegh- 
Krohn (1976, 1979). 

Corollary 2.1. I f  q~ is a Fourier transform of a complex-bounded Borel 
measure/x~ on ~", then Theorem 2.1 holds. 

Proof Nx defined by 

Nx(B) = IB e-(Z-X).(z-x), dz 

is a complex-bounded Borel measure in E~ for all x c R ~ and Re a > 0: it 
is in fact a "complex"  normal distribution with mean x and variance 
(1/2~d)I~• (Shaharir, 1986a). Thus, 

mx(A)=fAe-(Z-x~(z-x~[I~ei~'Y dlze,(y)]dz 

-< [gxl(A)[ t~ I(R") < 

which shows that m~ satisfies the hypothesis of  Theorem 2.1. 

Remark 2.1. Even though we have obtained our objective of  deriving 
a Feynmannian path integral in Euclidean space for all free diffusion through 
Theorem 2.1, it is clear that the f ramework used to obtain the result is not 
suitable for a generalization, because in general space, classical paths (even 
for free diffusion) do not constitute a vector space and the expression 

fo ~(S) " el(s) ds for curves 3' and 

on a manifold is meaningless. 
Thus, we need an entirely new framework to overcome this probelm, 

such as the one proposed by Elworthy and Truman (1981), Elworthy (1982), 
and DeWitt-Morette et al. (1979, 1980), and DeWitt-Morette (1979). 
However, we have obtained a different formulation (and different results) 
than those mentioned above, as shown in the following section. 

3. A DERIVATION OF A FEYNMANNIAN PATH INTEGRAL ON 
RIEMANNIAN M A N I F O L D S  

In this section we propose to generalize our main results in the previous 
section, so that a Feynmannian path integral for diffusion on Riemannian 
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manifolds can be obtained in a very similar way to that in the Euclidean 
space formulated in Theorem 2.1. 

First we prove several lemmas, which generalize the lemmas in the 
previous section and provide the basic framework for Theorem 3.1. 

Lemma 3.1. Let M be a Riemannian manifold with a metric g. Then: 

1. A curve y~  C2([0, t]; M) on M is a geodesic iff g(3>, 3>) is constant 
and 3> is not orthogonal to V~3>, 3~#0. 

2. The set of all geodesics on a Riemannian manifold is a submanifold 
of all C 2 paths on the manifold. 

Proof. (1) If y is a geodesic, then g(3>, 3>) is constant (see, e.g., Spivak, 
1979) and by definition, 3> is not orthogonal to V,9. If g(3>, 3>) is_constant, 
then 

d 
-v-g(3>, 3>) = 0 
as 

which implies 

and hence 

g(3>, v,3>) = 0 

V ~ = O  

if ~ ~ 0 or ~ is not orthogonal to V ~ .  
2. Consider 

F: C'[I; M ] ~  C[I; •] 

where C ' [ I ;  M] is a set of C'-smooth paths on M, and 

F(~ , )  = g(3>, 3>) 

We will show that F is C~176 any r > 0 is a regular value of F, so that by 
the well-known theorem on submersion (see, e.g., Abraham et al., 1983) 
F - l ( r )  is a submanifold, which is the required result, by the first part of 
this lemma. 

The smoothness of F follows from the smoothness of g. 
First we show that T~F(rl)= (F (y ) ,  2g(y, V~r/)). This can be shown 

by reinterpreting the classical expression 8g for g(~, ~) = g~k(x)Yd~ k, which 
is given by 

�9 j . r n  8g = 2gjmX (t~x +r~s 1) 

A rigorous proof  can be formulated by a slight modification of the modern 
formulation of the global calculus of variation (see, e.g., Choquet-Bruhart 
et al., 1982) as follows. 
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We have 

T~F(~?) is in 

Now 

F = ~o ~, ~: C'[I; M]-> C(I; TM) 

~ ( y )  = (% ~) a kind of lift of  y 

~,: C(I; TM)-> C[I; R] 

~(~,) = g o  

d F = 

dC~:{u}xI~C(I;  TIM) 
au 

C(.): (-e, e)--> C'[I; M], Co = y 

T~,: C(I; TTM)-> C(I; TR) 

T~(~): C(I; T~TM)-> C(I; T~(;,)~) 

which shows that the first component of TrF(*I) is correct. However, to 
obtain the full expression of TrF(~), we follow the standard argument in 
calculating (d/du)F(Cu) in a coordinate of M, (q, U), and the coordinate 
of TM, ((q, (1), TU), to obtain 

~u F(cu) = (~, D~)o D~.)~q.q) 

But in this coordinate 

ocS . ,  a~, ~ J �9 - - -  ~ .  o ~ ~ 1 7 6  

_Oq j~ OU 0(] J ~Uauos 

OgktOC~OCt~OC~+ OC~ 0 [OCt,\ 

which is the result by identifying ~/= (0 C,/Ou)l,=o and the relation between 
the Christoffel symbols and the derivative of the Riemannian metric. 
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Now, given any f ~  C(I; TR), there exists ~7 ~ C'[I; TM] such that 
T~,F(~?) =f,  since 

g(3 ~, V~rl) =f2, f =  (f ,  ,f2) 

is a linear ordinary differential equation in 77. This shows that TrF is 
surjective at 3', where F ( 3 ' ) = f l ,  and p # 0. Ker(TvF) splits TrC, since it 
consists of  ~ such that 

g(5~, V~n) = 0 

whose solution is a vector space spanned by a finite number of basis 
solutions. 

By definition, any f e  C(I; ~+) is a regular value of F. �9 

Lemma 3.2 Let 

Xiiq(Pct) = { X :  I = [0, t] ~ TM, X(s) c Tq(s )M , q ~ Pr VqX = 0, and 

(X[ Y) = m~ h Io g(X, Y) ds is well defined} 

Then Xllq(ecl) is a closed subspace of TqPc~, the tangent space to the manifold 
of the classical paths Pcl at q. 

Proof. It is clear that ,l(llq(Pcl ) is a vector space, since V 4 is linear and 
(. ]. ) is obviouisly an inner product on  Xljq(ecl), since g is an inner product. 
By definition, it is also obvious that )(llq is a subset of TqPo~ (e.g., Eliasson, 
1967), so we only need to show that any limit point is in Xllq(ecl). 

By a well-known result regarding vector fields along a geodesic (e.g., 
Spivak 1979), we may assume 

x = cq, c E R n. 

Suppose X =fo is the limit of an arbitrary sequence {Xk} in Xllq(ecl). Then 

~ IIX-Xkll2=  g((f -cOr (/-ck)o) ds 

into 11411 , h ( f -  ck)2 ds 

which shows t h a t f  is the limit of {ck} in L~oll~,(1; ~), the space of Labesque 
square-integrable functions with weight II0 Jl Thus f is constant almost 
everywhere and hence X is in  )(liq(ecl). �9 

Using Lemmas 3,1 and 3.2, we now propose the following theorem, 
which generalizes the results in the previous section. 
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Theorem 3.1. Let M be a proper Riemannian manifold with metric 
g : T M x T M ~ N ,  

Pd = {q: [0, t] ~ M, q is a C2-classical path of  a free particle on M} 

XIIq(P~O--{~.: [0, t ] ~  Tm, k(s)c Tq(s)M, qcPol,V4k=O, 

k 6  L~([0, t]; TM) in the sense that for any other ,,/ 
of  such a map (k]~/)= m/h Sto g(k(s) ,  .,/(s)) ds} 

1. The expression 

~)(X) : [ eig(m~ dl~( Y) 
d TmoM 

where/~ is a complex bounded Borel measure on TraM, can be reduced to 

(~(X) = f exp(i/ h <oL I [3) du([3) 
ax Irq (Pcl) 

where 

X = k~(so), So is arbitrary 

k 2 = rot~ h 

dp = F*( dtz ) 

F:Xrlq(Pc])~ T~M, mo = q(so) 

~ k ~ ( s o )  
2. Any function ~b : TM x I ~ ~, 

tp(x, t)= f e-13(t)g(z'z)N(fi(t), t)q2(x+z) dt.tr~oM(Z ) 
TmoM 

where/z  r~ou is the volume element of T~M, mo is an arbitrary element of  
M, Re/3(t)  > 0, N is a normalizing factor, and d):TMoM~ C is such that 

~,(A) = fA e-~(t)g( . . . . . .  )d~(z) dlXT~oM(Z ) 

defines a complex bounded Borel measure on T,,,oM for all X, Re a ( t ) >  O, 
can be reduced to a Feynmannian integral 

q'(X,t)= fx,,(pooexp[i/h f /  L(~ ds] dDF(~ 

where 

L(et(s)) = lmg(~(s), et(s)), ~t ~ Xllq(n~,) 

In particular, this theorem holds if ~b satisfies part  1 of  this theorem. 



1090 

Proof (1) 
T~M,  

Shaharir 

We may identify the integrand as a differential form f~x on 

f~x = exp o ig(X, �9 ) dlXr~oM 

For any smooth  F:XIIq(Pcl)-'~ T ~ M  we have 

F*f~x = (exp o ig(X, . )) o F.  F*( dt x) 

= exp o ( ig(X, . )  o F ) .  F*(dlx) 

Choose  F(et) = kot(So) for  some fixed Soe [0, t]; we have 

F*f~ x ([~ ) = exp[ ig( X, kfl( So) ) ]F*( dtx )([3 ) 

= exp[ig(ket(So), k[3(So))]F*(dlx)([3), 

d 
~s(g(~  , ~) = g(V ooL , [3) + g(~, Vq[3 ) 

= 0 by hypothesis  

But  

Thus 

g(et(So),[~(So)): t g(et(s),f~(s))ds f o r a n y  SoC[0, t] 

F*12x([3)=exp[i(k2/t) fog(et(s) ,[~(s))ds]F*(d/x)([3)  

= exp(i /f i( ,x I [3)) F* (d/~) (13) 

(., [3)=t g(a(s), 13(s)) ds 

m;o ti g(,x(s), [3(s)) ds, k2 mth 

Hence, 

where 

This completes the p roo f  for the first part  o f  the theorem. 

X = k~(So) 
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(2) We have 

g,(X, t) = f exp [i/2g(Z, Z) - g(Z, Z)(fl + i/2)] 
TmM 

x N(fl, t )ck(X+Z) dtzT,~M(Z) 

But 

v(A) = fA e x p [ - a g ( Z  - X ,  Z - X ) ] c k ( Z )  dktr~M(Z) 

= f exp[-ag(Y,  Y)]~b(X+ Y) dl~rm~,~(X) 
2 

[where z(Z) = Z -  X = Y] is given as a complex bounded Borel measure; 
hence, we may write 

~O(X, t) = f e '/2g(z'z) dVx,,(Z) 
d T~M 

where Vx. t is a complex bounded Borel measure on TraM given by 

dvx,,(Z) = N(fl, t) e (t~+'/2)g(z'z) ga(X + Z) dI~T~M(Z) 

By the same argument as in step 1 above, 

O(X, t) = f exp(i/Z(~t,t~)) dv(t~) 
Jx !Iv(Pr 

where 

dp = F*( dpx,~) 

F: Xrl~(Pcl)-~ T,~M, m = V(So) 

~o~[o~)=~ g(,~(s), ~(s))  ds L(,~(s)) d~ 

L(~(  s) ) : �89 ~(s)  ) 
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The second part is proved by the same argument as in the corollary of 
Theorem 2.1. �9 

Theorem 3.1 shows that "the sum over all classical paths" can only be 
realized (in the case of diffusion on a Riemannian manifold) in terms of 
"the sum over all vector fields parallel to the classical paths" and the 
classical Lagrangian involved is given (in a natural coordinate system) by 

L(x, 2) = �89 k 

where x is the integral curve for the vector field parallel to the classical path. 
Theorem 3.1 already suggests that a Fourier integral operator, 

analogous to the operator discussed in great detail by Hormander (1971), 
of the form 

F~(eh)(X) = f eiS(X'Y)r HI.I,T.M (Y) 
T~M 

where 

S(X, Y) = g(X, Y) + iS2(X, Y) 

for some $2 would be the most suitable operator for solving the diffusion 
equation on a Riemannian manifold. The solution then can be reduced to 
a Feynmannian path integral (using the results here) for a class of  initial 
distribution ~b such that 

r  = f e is(x'v) dee)(Y) 
T~M 

for a complex bounded Borel measure ue) on TxM associated with r 
Accordingly, a Fresnelian integral on Riemannian manifolds can also be 
formulated. I will discuss these aspects elsewhere. 
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